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An indirect boundary integral method is used to solve transient nonlinear ship wave problems.
A resulting mixed boundary value problem is solved at each time-step using a mixed Eulerian—
Lagrangian time integration technique. Two dynamic node allocation techniques, which
basically distribute nodes on an ever changing body surface, are presented. Both two-sided
hyperbolic tangent and variational grid generation algorithms are developed and compared on
station curves. A ship hull form is generated in parametric space using a B-spline surface
representation. Two-sided hyperbolic tangent and variational adaptive curve grid-generation
methods are then applied on the hull station curves to generate effective node placement. The
numerical algorithm, in the first method, used two stretching parameters. In the second method,
a conservative form of the parametric variational Euler-Lagrange equations is used the
perform an adaptive gridding on each station. The resulting unsymmetrical influence coefficient
matrix is solved using both a restarted version of GMRES based on the modified
Gram-Schmidt procedure and a line Jacobi method based on LU decomposition. The conver-
gence rates of both matrix iteration techniques are improved with specially devised precondi-
tioners. Numerical examples of node placements on typical hull cross-sections using both
techniques are discussed and fully nonlinear ship wave patterns and wave resistance computa-
tions are presented. © 2000 Academic Press

1. INTRODUCTION

THE AIM OF THE PRESENT PAPER is to examine the transient ship-wave problem by taking into
account an adaptive algorithm on a continuously changing hull surface, on which the
kinematic hull boundary condition must be applied. It is known that transient ship-wave
problems in their exact form are quite difficult to solve, due to both nonlinearity of the
free-surface boundary conditions and the instantly changing hull surface. A mixed
Eulerian-Lagrangian scheme (Longuet-Higgins & Cokelet 1976) is employed to solve the
fully nonlinear problem. The basis of the method is to use the free-surface boundary
conditions to time-step the solution. At each time-step, the positions of the free surface and
the body surface are known. The value of the potential on the free surface (Dirichlet
condition) and its normal derivative on the body surface (Neumann condition) are also
known. This well-defined mixed boundary value problem can be solved using a variety of
numerical methods. The kinematic and dynamic free-surface boundary conditions are then
repeated for the next time-step. The indirect desingularized boundary integral method (Cao,
Schultz & Beck 1991) is used to solve the mixed boundary value problem. The main
advantage of this technique is that singularities are placed outside the fluid domain. This
avoids the need to evaluate singular integrals on the body and free surface and allows one to
use a simple numerical quadrature. The total computational effort at each time-step is thus
greatly reduced. Beck, Cao & Lee (1993) and Beck, Cao, Scorpio & Schultz (1994) used
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Figure 1. Earlier Wigley hull computations.

a Wigley hull as a typical body form due to its simple mathematical representation. This
allowed efficient computation of the hull offsets and unit normal at any point. In addition,
the bow and stern profiles were vertical so that computational stations could be fixed along
the length. Since the vessel length did not vary as the hull waterline changed, there was no
need to change the computational station spacing. For the previous Wigley hull computa-
tions, a cosine node spacing in the longitudinal direction and a constant spacing in the
vertical direction were used. There was an equal number of nodes at each station (see
Figure 1 for an illustration of such a computation).

For arbitrary ship hulls, several differences from the simplified Wigley hull form calcu-
lations must be taken into account. Celebi & Beck (1997) studied the nonlinear ship-wave
resistance problem for an angled bow and stern of a Wigley hull using an adaptive
geometric modelling. Here we will extend this study by adding a new adaptive gridding
technique developed by Vinokur (1980), and iterative computation algorithms for the block
matrix equations (Celebi et al. 1997, 1998). A second boundary value problem for d¢/ot is
also set up for accurate estimation of fluid particle accelerations surrounding the body.
First, in order to account for the arbitrary hull shape, we will use a parametric B-spline hull,
surface representation of the hull, and then use a special transformation to move from
parametric space to physical space. Second, the girth from the keel line to the waterline can
vary significantly in the longitudinal direction. Thus, it is no longer desirable to have the
same number of nodes at each station. Third, there is often bow and stern rake, so that the
waterline length varies as the hull moves into and out of the water. In order to maintain
constant relative spacing between the computational stations, their longitudinal positions
along the changing hull length must also vary with time. Finally, the node distribution
should be sensitive to station form (i.e., for a given number of nodes, the nodes should be
concentrated in regions of high curvature).

2. MATHEMATICAL FORMULATION
2.1. THE MixeD INITIAL BOUNDARY VALUE PROBLEM

The fluid is assumed inviscid and the flow irrotational, so that a velocity potential
(solenoidal vector field) exists in the fluid domain. Surface tension is neglected on the free
surface. An Oxyz Cartesian coordinate system is chosen such that the z = 0 plane corres-
ponds to the calm water level and z is positive upwards. The coordinate system Oxyz, for
the forward speed problem, is translating in the negative x direction relative to a space fixed
frame; for the zero forward speed problem it is fixed, and the x—z plane is coincident with the
centre-plane of the body. The total velocity potential can then be expressed as

¢ = UO(I)X + ¢(X5 Y, 2, t): (1)
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where U, (t) is the fluid velocity and ¢(x, y, z, t) is the perturbation potential. The boundary
value problem is governed by the Laplace equation, and both @ and ¢ satisfy the Laplace
equation. The fluid domain is bounded on top by the free surface (S¢), internally by the hull
of the body (Sy), below by a bottom surface (Sp) which is flat, and an enclosing contour
surface (S.,) which includes upstream, downstream and side boundaries. A kinematic body
boundary condition is then applied on the wetted surface of the body,
0
67¢ = — Uo(t)nx + VHn on SH, (2)
n
where Vy is the velocity of the body including rotational effects relative to the Oxyz
coordinate system. A similar kinematic condition must be satisfied on the flat bottom,
0
—¢ =0 on Sg. (3)
on
Both the kinematic and dynamic boundary conditions must be satisfied on the instan-
taneous free surface. The kinematic free-surface boundary condition requires that the
normal velocity of the fluid and of the free surface are equal:
an d¢ an
—=—=—Vo-Vn+— —Uy(t) — S 4
I~V Vn+ 5 — U5 on Sy, @
where z = 5(x, y, t) is the free-surface elevation. The dynamic condition requires that the
normal stress on the free surface equals the ambient pressure P,. The dynamic boundary
condition, from Bernoulli’s equation, then becomes
3l 1 dp P
— = —gn—=|VPP* — Uyt) = ——* Sk, 5
5 = oIV U T~ ons )
where p is the fluid density and ¢ is the gravitational acceleration. The boundary condition
applied on the far-field boundary requires that the disturbance vanish at infinity, such that

V¢ -0 (onS,). (6)

Initial conditions which correspond to starting the body from rest are specified such that
the velocity potential on the free surface and the position of the free surface are set equal to
those on the calm free surface,

¢ =0 (in fluid domain, at t = 0),

n=0 (on Sp,att=0). (7)

2.2. TiME MARCHING OF THE FREE SURFACE BOUNDARY CONDITIONS

The most common approach to time marching the free-surface boundary conditions is
a material-node approach in which the nodes or collocation points follow the individual
fluid particles. An alternative technique is to prescribe the horizontal-movement-of-the-
node but allow the node to follow the vertical displacement of the free surface. The
prescribed movement of the nodes may be zero, such that the node locations remain fixed in
the x-y plane. Depending on the problem, one of these techniques may be easier to apply
than the other. It is convenient to rearrange the kinematic and dynamic boundary condi-
tions in terms of the time derivative of a point moving with a prescribed velocity v relative to
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the Oxyz coordinate system. Both free-surface boundary conditions can then be put in the
form

on ¢ ) on

SH=— (V=) Vn+ 5"~ Usl) 5. on S ®)
and
0 1 0 P,
£=—gﬂ—*|V¢|2+V'V¢—Uo(t)*¢—* on Sg, )
ot 2 x p
where
0 0
5 = o +v-V (10)

is the time derivative following the moving node. If v is set equal to (U(¢), V (t), on/ot) the
node follows a prescribed path with velocity (U(t), V(t)) in the x-y plane and moves
vertically with the free surface. The above equations then reduce to

0 0
5—?——V¢> Vi +U(t)—+ V(t)—n—i—a—d)—Uo(t) on Sy (11)
and
09 _ L v o¢ ﬁ n0b ¢ _Pa
5 —gn —2|V¢| + U(1) ox + V(¢ & pe Uy (t) x p on Sp. (12)
Setting the fluid velocity Uy(t) = 0, we obtain
on . an d¢
51?__V¢ Vn+U(t)6x+V()8 +62 on Sy (13)
and
09 _ LR o¢ 09, on db _ P
5t——g11—2|Vq,'>| +U(t)6x +V()8y +5t P _p on Sp. (14)

The last form of the kinematic and dynamic boundary conditions allows the value of the
free-surface elevation and potential to be stepped forward in time. One difficulty is the
evaluation of the gradient of the free-surface elevation, V. Therefore it must be evaluated
numerically, but this increases the computer CPU time and sometimes leads to numerical
inaccuracies.

The spatial derivatives of 5 are obtained by using both a piece wise cubic spline function
and a finite difference scheme. Here, all node points in the x direction are fitted to a piece-
wise cubic spline. Then any point other than the node points is found by employing
the cubic spline function with the known coefficients. Once we know the new locations of
the nodes, we can use the second-order finite difference scheme to obtain the spatial
derivative of 5. In problems with forward speed, the material node approach has difficulties
near the body because nodes tend to pile up near the body stagnation regions, and with
material nodes one must always be concerned that the nodes do not penetrate the body
surface between time-steps since they are unconstrained. In this study, we use the prescribed
horizontal movement-of-the-node approach, which is appropriate for the forward speed
problem.
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3. ADAPTIVE GRID APPROACH

Two different adaptive curve grid generation techniques are investigated for the node
distribution on the ship hull. First, a variational grid generation technique, and second an
algebraic grid generation technique, based on the so-called Vinokur (two-sided hyperbolic
tangent) distribution.

In a successful adaptive grid, the grid points on the station curves must efficiently
distribute themselves so that a functional relationship between these points can represent
the physical solution with sufficient accuracy. Data manipulation, communication between
nodes, error evaluation and redistribution of nodes in the light of the error evaluation are
the basic techniques involved. An adaptive grid approach must contain the following
characteristics. (i) The nodes must concentrate in areas of high curvature and yet no region
can be allowed to become devoid of nodes. (ii) The distribution must also retain a sufficient
degree of smoothness, and the grid must not become too skewed, otherwise the truncation
error is increased. This means nodes must not move independently, but rather each node
must somehow be coupled at least to its neighbors. (iii) The node points must not move too
far, or else unwanted oscillations in the computed results may occur. (iv) Finally, the
solution errors must be sensed, and there must be a mechanism for translating this into
modification of the grid. The need for a mutual influence among the nodes requires some
sort of attraction (repulsion) between node points.

Variational principles provide a clear and intuitive means of building grid generation
algorithms and they allow the control of the length of segments in the grid, areas of cells in
the grid, and the orthogonality of the angles between grid lines (for surface grids). Weighted
variational principles, leading to weighted grid generators, are often more useful due to the
use of weight functions for controlling the grid spacing. Brackbill & Saltzman (1982) have
first proposed the variational grid generation method for planar 2-D regions. Saltzman
(1986) extended the method to an arbitrary surface grid generation later. These methods
were formulated in terms of a continuous mapping from the physical object to the logical
domain. The motivation for reformulation was direct control over grid qualities such as
smoothness, area, and orthogonality. Although largely successful in the plane, the latter
approach results in solution bifurcation of the discretized equations when applied to curve
and surface grid generation (Steinberg & Roache 1991). Highly curved physical objects
caused solution bifurcations that could not be avoided by increased grid resolution or by
alternative discretizations of the grid generation equations. The problem of grid generation
on lines and surfaces of high curvature appears to have been overcome by reformulating the
continuum functional in terms of the physical variables, with constrained minimizations.
Castillo (1987) developed a theory of variational grid generation in the plane, known as the
direct variational method, in which discrete functionals are directly minimized using
nonlinear optimization techniques. In this study, a weighted adaptive grid generator which
controls the grid spacing using a space weight function is used.

A two-sided hyperbolic tangent distribution was first proposed by Vinokur (1980). The
main advantage of this technique is that it allows the grid distribution to be controlled by
two parameters on both sides of the curve. In this way, the node distribution along the
station curves can be optimized by two stretching parameters located at both keel and deck
ends. This technique is extensively used by some CFD applications and multiple block grid
generation algorithms (Steinbrenner et al. 1990).

4. VARIATIONAL GRID GENERATION ON STATION CURVES

A variational approach to curve generation is used to create grids with specified distan-
ces between the node points. A significant difference between space curve (which is a
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three-dimensional curved line) and straight line grid generation is that the Jacobian matrix
is not square. As a result, constraints must be imposed on the curve minimization to ensure
that the resulting grid points lie upon the given station curves.

4.1. GrID GENERATOR THAT CONTROLS SPACING

In this section, a second-order differential equation for generating grids is introduced, such
that the length of the segments in the grid are specified by a weight function. The details of
this derivation can be seen in Knupp & Steinberg (1994). Consider a weight function ¢ (&)
that depends on the logical-space variable &, for & in the interval [0, 1]. The lengths of the
grid intervals are to be positive and proportional to ¢, so it is natural to assume that
¢ =¢(&)>0. If M is a positive integer, then an unfolded grid on the interval [a, b]
containing M + 1 points is given by x;,0 <i < M, where xq = a, xy = b, and x; < X;4 1,
0<i< M — 1. The problem is to generate a grid so that the lengths of the intervals
[x;, x;+1 ] are proportional to the value of ¢ at the midpoint of the interval. In other words,
find x; so that

(15)

Xit1— X; = K {(élﬂ;él)}’

where 0 <i <M — 1 and « is some constant that is to be found. If the grid is given by
a transformation from logical to physical space, then x; = x(&;) where & = i/M = iA¢. If
¢ is continuous, then for A¢ going to zero, the left-hand side of equation (15) goes to zero
while the right-hand side does not. To resolve this, we set Kk = CA¢ where C is another
constant, and divide equation (15) by 4¢ to obtain

Xi+i‘é— Xi _ Co {(fw 12+ fl)} (16)

If x is continuous, then the limit of equation (16) as 4¢ — 0 yields the ordinary differential
equation

xe(&) = Co(&). (17)
Dividing equation (17) by ¢ and differentiating with respect to ¢ gives

el _
o

If ¢ is differentiable and x is twice differentiable, the quotient rule for derivatives and some

algebra gives
(bz}
Xee —4— ¢ Xe = 0. (19)
e {(f) g

The transformation must satisfy the boundary conditions x(0) = a, x(1) = b. These bound-
ary conditions along with the linear differential equation given in equation (19) uniquely
determine the transformation x.

4.2. PARAMETRIC APPROACH

One way to impose constraints which ensure the resulting grid points lie upon the given
station curves is to transform the curve minimization into a parametric space.
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Suppose that an initial parameterization x(r), 0 <r < 1, of a curve with continuous
second derivatives is given and the curve is to be reparameterized using a variational grid
generator. The curve grid functional has the property that the local tangent is proportional
to the physical-weight function. We shall minimize the curve functional

Lo
six = | i (20
0

where #:R — R is an arbitrary positive real homogeneous function, g;; = X;*X; is the
length metric (x; represents the derivative of x with respect to ¢), and w is a physical-space
weight function. The set of admissible functions must satisfy the end-point constraints
x(0) = a € R* and x(1) = b € R>. A space curve requires three functions x(¢), y(£) and z(¢) to
be found. As a result, a constraint must be imposed on the minimization to ensure that the
new parameterization, x(&), is a reparameterization of the original curve x(r); i.e., the new
points must lie upon the curve implied by the old parameterization.

One method of implementing the constraint is the Lagrange multiplier approach and the
other is called the parametric approach. We used the parametric approach due to its
simplicity and accuracy, because the Lagrange multiplier approach gives an off-curve
truncation error for each node point on the station curve. The local off -curve truncation
error measures the normal displacement of the discrete grid node from the given curve. It is
known that the parametric formulation of the grid generation process guarantees that the
off-curve truncation error equals zero at these discrete grid nodes. Therefore, the concept of
parameter space is introduced in the parametric approach to ensure that the grid points lie
upon the given curve. Parameter space consists of an intermediate domain 0 < r < 1 such
that r = r(¢) is a mapping from logical space to parameter space, and x = x(r) is the user-
specified mapping from parameter space to physical space (the space in which the hy-
drodynamic calculations are performed). The following transformation rules apply to the
composite map from logical to physical space:

X =X,'T;, J=3r; and 911=g11r§, (21)
where 3" = (x,,¥,,%,) and g,; = X,*X,. In order to obtain an efficient computational
scheme, the first term in equation (19) can be expressed in terms of the logical space
derivative (¢). The variational Euler-Lagrange equation which gives the grid generation
equation for a curve can then be expressed in terms of ¢ in the following form [see Knupp

& Steinberg (1994)]:
H Greer: B Gr-RB
<~_2> - #2‘f - r§< ~€2 > =0. (22)
Layr \'4 we /e

In conservative form, this equation may be expressed as

24
{(Jf—v;fré&?) }é =0, (23)

where

G = ST.‘J] = [gll:ls g11 = XX, ST = (xra yrazr)s

oH
%’=2<a >, gu=g11'r§, I = (x¢, ye, z¢);
[A%1



288 M. S. CELEBI

wis a physical weight function, and 5 an arbitrary positive real homogeneous function that
provides invariance of the grid generator. Letting ## = g4, the conservative form of the
variational Euler-Lagrange equation becomes

2
8117%

{ = } =0. (24)
woo)e

The effect of the physical weight function W(r) (or physical-space weight function w(x(r))),
here, is to reduce (or enlarge) the point spacing x: where W(r) is large (or small), and
therefore the weight function should be set as some measure of the solution variation or the
solution error. One choice can be the curvature of the solution curve. The node points, then,
will be concentrated in regions of high curvature of the solution curve (which is desirable in
most cases) and near the extremes with a tendency toward equal spacing in regions of zero
curvature.

5. HYPERBOLIC TANGENT DISTRIBUTION ON STATION CURVES

In order to optimize the distribution for a given number of grid points, another solution is
the boundary-fitted coordinate transformation that clusters points in regions where the
dependent variables undergo rapid variation. In our case, these regions result from the body
geometry (i.e., very large curvatures or steep corners). In the regions of rapid variation, the
clustering can be obtained from either automatic grid generators which solve an elliptic
boundary value problem, or one-dimensional stretching functions derived purely algebraic-
ally. We define stretching function here as a transformation involving stretching or cluster-
ing. In this study, we will use two-sided stretching functions on which the slopes at the
two ends of the one-dimensional interval are specified. An interior stretching function is
defined as

tan [4z(&* — 3)]

U =05+ ndz2) =
where
_ . * (é - émin)
AZ —aT lb’ 5 a (émax - 5min) .

The curve parameter ¢ changes between &, < & < &, and 0 < &* < 1. Here &,,;, and
Emax correspond to keel and deck ends on the station curve, respectively. Assume that S, and
S are nondimensional slopes at both ends of the space curve. Then B is defined as the
nondimensional variable B =./SyS; = [sin4z]/4z. The continuous behaviour of the
nondimensional slopes S, and S;, which vary from zero to infinity, is an important criterion
in the development of a two-sided stretching function. This is especially necessary to obtain
smooth grids constructed algebraically. The method dictates that if B <1, one uses
a tangent stretching function with real argument where Az = g; and if B > 1, one uses
a hyperbolic tangent stretching function with pure imaginary argument where 4z = ib.
Thus, U(¢) is found once we know the value of a or b using the relation B = [sin 4z]/4z.
Finally, the resulting grid distribution is determined by using the equation

Simax U (S)

R T

(26)

where S,,., = max. length of the curve and 4 = ,/S,/S;.



TRANSIENT NONLINEAR SHIP WAVES 289

6. NUMERICAL IMPLEMENTATION

The numerical implementation for an advancing ship starting from rest will be briefly
analyzed in the first sub-section. Then, computational details of grid generation on station
curves will be introduced in the following sub-section.

6.1. DESINGULARIZATION

The Indirect Desingularized Boundary Integral Method (Beck et al. 1994) uses sources
distributed outside the fluid domain, so that the source points never coincide with the
collocation or node points, and the integrals are nonsingular. Due to the desingularization
we can use simple isolated sources, rather than a distribution over the panel, with the
equivalent accuracy. The isolated sources are distributed a small distance above each of the
nodes. The distance to the isolated sources is in general given by L, = I;(D,,)*, where D,), is
proportional to the local mesh size and [; and f are the constant nondimensional para-
meters to be selected. A detailed study of the performance of DBIEM with respect to the
desingularization parameters is reported in Cao et al. (1991).

The unknown velocity potential ¢ must be found by solving the mixed boundary value
problem at each time. The potential at any point in the fluid domain is given by the
distribution of Rankine sources:

$x) = J f o(x) (1> de, @7)
Q |X - Xs|

where Q is the integration surface outside the fluid domain and ¢ is the source strength to be
determined. Applying the relevant boundary conditions with the given potential on the free
surface and the known normal velocity on the body, the desingularized indirect boundary
integral equations that must be solved at each time-step to determine the unknown source
strengths are

J‘J. G(XS) <1> dQ = ¢0 (Xc)> (Xc € Fd) (28)
Q |Xc - Xs|

and

f J o(x) < <1) 42 = 7(x), (xe L) 29)
Q 6n |Xc - Xs|

where X, is a source point on the integration surface, X, a field point on the real boundary,
¢o the given potential value at x,, I'; a surface on which ¢, is given, y the given normal
velocity at x, and I, a surface on which y is given.

The integration domain includes the free surface and body surfaces. The desingularized
forms of the integral equations (28) and (29) are satisfied at the nodes on the free surface and
body surface, leading to a system of N equations for the N unknown source strengths
(6(x)). Here N represents the total number of unknowns (N = Ng + N, where Ny is the
number of node points on free surface and Np is the number of node points on the body).
Subsequently, ¢ can be evaluated by equation (27) after solving the resulting equations (28)
and (29) simultaneously. Its spatial derivative V¢ can be obtained from the derivative of
equation (29), where the differentiation of the Rankine source can be done analytically. In
the case of a flat sea bottom, image sources can be used to eliminate the integration over the
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bottom surface. The hydrodynamic forces and moments acting on the body were computed
by integrating the pressure over the instantaneous wetted hull surface,

F = fJ PngdS (30)
Sp

M = jf P(r x ng)dS, (31)

and

where
ng = (14, Ny, n3), ¥ X Ng = (14, Ns, N);

r and np are the position vector and unit normal vector (out of fluid) of the body surface,
respectively. Bernoulli’s equation gives the total pressure on the wetted body surface

£=—g2—1V¢'V¢—@+V'V¢, (32)
0 2 ot

where 0¢/ot is the time derivative of the velocity potential following a moving node on the
body and v is the velocity of the node relative to the Oxyz system. Earlier studies (Tanizawa
1995; Beck et al., 1994) show that a numerical differentiation (e.g., backward difference) for
o¢/ot can lead to poor estimates of the derivative and possible instabilities. Therefore, in
this paper a new boundary value problem (BVP) was set up for d¢/dt using the given d¢/ot
on the free surface (Bernoulli’s equation) and d(d¢/dt)0n = 0 on the body surface. The d¢/dt
on the free surface was calculated from the dynamic free-surface condition given by
equations (12) and (14). The time derivative of the velocity potential was then obtained by
solving the second matrix equation at each time-step with the same influence coefficient
matrix. This scheme can also be directly applied to the freely floating body simulation.

6.1.1. Iterative solver and preconditioning

The resulting influence coefficient matrix is obtained from equations (28) and (29) and it is
large, dense and unsymmetrical. In solving such a large matrix, the iterative methods
generally have advantage over the Gauss-elimination-type matrix solvers. The iterative
matrix solver called the Generalized Minimal Residual Method (Saad & Schultz 1986) is
here used for solving the system at each time-step. GMRES is an extension of MINRES
(which is only applicable to symmetric systems) to unsymmetrical systems, and generates
a sequence of orthogonal vectors keeping the previously computed vectors in the ortho-
gonal sequence. The most popular form of GMRES is based on the modified
Gram-Schmidt procedure, and uses restarts to control storage requirements. Another
alternative for a partitioned block- matrix system is to use the block Jacobi method. It is
known that the block iterative method is faster than the point method on most serial
computers. In this study, the Jacobi iterative algorithm developed for blocked matrices is
used alternatively:

AGD X:;{)Jr n=- Z AGD) ng)) + B(i), (33)

G#
where X and B are partitioned commensurately with 4. Thus, carrying out one iteration
requires the solution of the previous systems of equation (33) with coefficient matrices A%7.
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Assuming that X)) and B?” contain initially guessed values and the boundary values,
respectively, the unknowns X ﬁ{c)) on each row are updated simultancously using the values
from the previous iteration. This is called the line Jacobi method. Since each A®? is
assumed to be nonsingular, a parallel implementation of the above method is done using
L;U; decomposition of A4%7.

A preconditioner is a matrix that accelerates the convergence rate of an iterative method.
We know that the convergence rate depends on the spectral properties of the coefficient
matrix. Therefore, the main purpose of the preconditioner is to transform the linear system
into one that is equivalent in the sense that it has the same solution, but it has more
favourable spectral properties. In our computations, we used a preconditioning matrix
A such that A~ ' A closely approximates the identity matrix, yielding a strongly diagonally
dominant matrix and small condition number. In general, it is not easy to find an optimum
A matrix for a dense, nonsymmetric 4 matrix. In this study, however, we used Aas A% ie.,
A at t = 0. Even if the free-surface boundary and hence 4 change with time, 4° is still quite
a good approximation to A, especially when the boundary integral is desingularized.
Another alternative to obtain more favourable spectral properties of the coefficient matrix
is to minimize the condition number using one-sided scaling based on the Holder p-norm.
This technique is applied to the current problem as an alternative to the GMRES method.
A brief summary of this technique is as follows. Let A € R™*" have full rank and let
D, = R**¥ denote the set of nonsingular diagonal matrices, and define

D.:=diag (||AG,j)ll,) ", Dr:=diag(||AG, )|, " (34)
Then
k,(AD,) < n'~''" min k,(AD) (35)
DeD,
and
k,(DrA) < m’”? min k,(DA). (36)
DeD,,

For p = oo, inequality (36) confirms that row equilibration is an optimal row scaling
strategy; similarly, for p = 1, column equilibration is the best column scaling, by inequality
(35). Known as the Van der Sluis theorem, this shows that row and column equilibration
produce condition numbers within factors ﬂ and /n, respectively, of the minimum
2-norm condition numbers achievable by row and column scaling. The above procedure
was tested by applying the scaling on the partitioned matrices of A4 rather than the 4 matrix
itself. Test results show that the reduction of the condition number for each partitioned
submatrices is around 1/(MN)'*, where (M x N) is the size of the submatrices. This
reduction in the condition number gives better convergence in the computations. As
a result, scaling of the influence matrix can also be used to reduce the iteration number,
especially in the block Jacobi method, and hence to accelerate the convergence speed.

6.1.2. Saw-tooth instability and regridding

The so-called sawtooth instability was first introduced by Longuet-Higgins and Cokelet
(1976) during their two-dimensional breaking wave simulations. They suggested that
a possible cause of the instability was partly numerical and partly physical. They, therefore,
employed a smoothing technique to suppress the development of the sawtooth instability
by very short waves. Later researchers pointed out that a possible cause of the instability



292 M. S. CELEBI

was the concentration of Lagrangian points in the region of higher gradients, when the
minimum grid size cannot be effectively controlled for a given time-step. For this reason,
a similar regridding algorithm developed by Dommermuth and Yue (1987) is here used to
eliminate such instabilities. Thus, a new set of uniformly spaced Lagrangian points is
created on the free surface and body surface after every time step. The boundary values on
the new set of nodal points are then redistributed by using a cubic-spline interpolation
technique. Then, the fourth-fifth order Runge-Kutta-Fehlberg time-integration scheme is
employed to continue the time stepping. Using this algorithm, most of the instabilities are
completely removed and no artificial smoothing is required.

The main disadvantage of regridding is the potential loss of resolution which is usually
provided by more closely spaced Lagrangian points in the areas of large gradients. The
advantages of regridding over artificial smoothing, however, particularly in the present
context, are substantial, in that the smoothing cannot be straightforwardly applied at the
body-free-surface intersection line and the crossing of Lagrangian points can be more easily
controlled.

6.2. NUMERICAL GRID GENERATION

Suppose that the body node locations x; on the station curve need to be computed,
0 <i < M, where M is a given positive integer and x, = a and x,; = b are the first and last
points on the station curve. The finite difference approximation to the differential equation
(24) results in an algebraic equation called the stencil equation [see Knupp & Steinberg
(1994)],

. C. R.
ri— 71‘}‘7'1' ! +Vi 7!:0 (37)

Lo T (M T T (agp

where
Li=Ti_1p, Ri=Ii41, Ci=—(L;+R)),
AE =4, E=idE,0<i< M.

The lagged coefficients are evaluated as follows:

Fi+1/2:|:g~121:| (Fiv1 —1i) (38)

W= li+1/2

The first factor on the right is merely a function of the parameter r, so it may be evaluated at
the half-point by

r; + r;
Fiv12 = % (39)

As usual, i =1,..., M — 1 are the interior points and ro, =0, ry; = 1 are the boundary
conditions. Assume, initially, r; is equal to x;. Any problem where the L;, R;, or r; depend on
the grid, that is, on the x;, is nonlinear. The problem is solved using a nonlinear iteration
procedure. A small tolerance parameter ¢ that determines the accuracy of the solution must
be given. To start the iteration, an initial grid x{® must be generated, say using linear
interpolation. Then, a nonlinear iteration loop starts with evaluating L;, C;, R;, and g;; using

x{". The next step is to solve the resulting linear system for x; = x!" using a tridiagonal
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solver. Finally, one computes § = max; |x}" — x{'%|. If § > ¢ then one sets x{'¢ = x7** and
loops, otherwise one quits the loop.

In order to apply the numerical curve grid generation techniques discussed above, we
need shape information for each station along the hull which includes coordinate trans-
formation, curvature distribution, and girth length. A ship hull form is generated such that
a body form defined by an offset is fitted by a single B-spline surface using defining vertex
points. The hull form is generated on the computer using offsets, and verified by the
curvature porcupines which provide second-order (C?) continuity on the station curves.
Special hull definition routines are devised for accessing shape information for any arbitrary
station along the hull. This is performed using a Newton root finding search technique.

7. NUMERICAL VERIFICATION

For the present transient nonlinear ship wave computations, the numerical error can be
controlled by the number of node points in the solution domain, the mesh size, the
desingularization distance (I;), the error tolerances for the Runge-Kutta-Fehlberg integra-
tion scheme and the iterative matrix solver. Extensive numerical tests proved that, as long
as the matrix error tolerance is less than 10~ 7 on 64-bit machines (such as CRAY J90, C90,
or SGI Power Challenge), the Runge-Kutta-Fehlberg error tolerance less than 10~ 3, and if
the mesh has at least 12 nodes per wavelength, the boundary value problem can be solved
with high accuracy. The time-step used for the hydrodynamic computations is directly
related to integration scheme and its order. Therefore, At = 0-1s is used for the computa-
tions. To check the convergence with the number of nodes, three different discretizations on
the free surface, Ny = 1246, 2420, and 3840, were tested (Kim, Celebi & Kim 1998). The
convergence rate was measured by

Ems: 5
r NTlZ(aM UM 1

where M denotes the number of iterations, N is the total number of nodes and ¢° denotes
the unknown source strength at the ith node point. For M = 12, E,,, = 107>, 10" °, and
10~8, respectively for Ny = 1246, 2420, and 3840, which shows that more accurate results
can be obtained with finer discretization (see Figure 2). Numerical tests show that the
distance of the isolated sources tends to get smaller value for finer discretization and if the
value of L, is too large or too small for the same discretization, then the number of iterations
for convergence increases significantly, or the solution diverges during the iterative solution
of the influence matrix system.

Typical ship sections were tested using both grid-generation techniques. The basic
difference between the two curve grid generators is that the Vinokur distribution can
manipulate the grids simply by choosing the stretching parameters at two ends; however
variational grid generation distributes the grids in terms of the slope gradient of the space
curve. Initial computations show that the distribution of the nodes using the hyperbolic
tangent method depends on choosing the stretching parameters for each station curve along
the ship hull. In the case of 100 stations, choosing and testing of the 200 stretching
parameters would be an additional burden besides the node distribution itself. Figure 3
shows the two-sided hyperbolic tangent distribution and the variational grid distribution
on the station curve, for the same section function. Stretching parameters &4.. = 0-5 and
Ereet = 0-05 are used in the hyperbolic tangent distribution to get the similar node place-
ment. Figure 4 shows the comparison of the two techniques on a typical ship section using
a given number of node points on each station. The results show that both methods
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distribute nodes similarly, with some extra effort needed in the hyperbolic distribution (such
as choosing stretching parameters). Using the curvature as the space weight function
appears to be a good choice. As can be seen in Figure 4, the node points are properly
distributed. On the zero curvature regions (calculated in parametric space), there is an equal
chord length spacing. On the other hand, nodes tend to accumulate in regions of high
curvature. For the stations tested, the weight function formulation seems to work effec-
tively. More testing for a larger array of section types is needed to verify that using the
curvature as a space weight function is an optimal node distributor.

8. NONLINEAR SHIP-WAVE COMPUTATIONS

Figure 5 shows the coordinate system used for the computations. The Wigley hull form was
used in order to verify the mathematical procedure of surface fitting and node distribution,
since the answers could be compared with previous computations (Beck et al. 1994). The
chosen hull has a length-to-beam ratio of 10, a beam-to-draft ratio of 1:6 and the following
equation for its hull surface:

SAETEE

where L is the length, B/2 the half-beam, and H the draft.

Two wall-sided Wigley hulls with different bow and stern profiles were used to compute
the wave resistance and ship-generated free-surface waves [Figure 6(a, b)]. The second
Wigley hull form with angled bow and stern profiles has been created from the standard
Wigley hull form by changing the bow and stern profiles, corresponding waterlines, and
stations. This was accomplished by creating a Wigley hull using a CAD program and then
the bow and stern profiles were pulled below the calm waterline and stretched above it. The
reason for using a B-spline representation for the standard Wigley hull form is to test the
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Figure 3. (a) Hyperbolic tangent: ——, y = x%; @, Egeck = 0.5, Ereer = 0-05. (b) Variational grid
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node distribution techniques. We may then compare the B-spline results with the previous
analytic results of Beck et al. (1994) and verify the accuracy of the B-spline surface
representation and node distributions. Both models are started from rest with their velocity
at any time given by

Up(t) = Uy (1 — e~ 2057, (41)

The parameter 0-05 was found to be suitable for the range of model scales investigated here.
The reason for a Gaussian start-up was that it has zero acceleration at t = 0, but another
start-up formulation such as hyperbolic tangent could be chosen.

The normalized wave profiles along the hull at t./g/L = 20 (where t = 285, corre-
sponding to steady-state conditions being reached) are given in Figures 7(a) and 7(b) for two
Froude numbers; (the Froude number is defined by Fn = V/\/g_L where V, L, and g are the
velocity, the characteristic length of the body, and the gravitational acceleration, respective-
ly). The experimental result for a standard 2-5 m Wigley hull fixed in sinkage and trim are
taken from Noblesse & McCarthy (1983). A Wigley hull with an angled bow and stern and
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Figure 6. (a) Standard wall-sided Wigley hull (b) Wigley hull with sloped bow and stern.
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Figure 8. Development of the wave system along the Wigley hull surface, Fn = 0-289. The wave
profiles are at equally spaced time-steps in the interval ¢, /g/L = (0, 13-5).

the standard Wigley hull are used in Figures 7(a) and 7(b), respectively. The approximate
value of the total change in wetted volume due to the raked bow and stern is around 5%.
There is generally good agreement except for a slight difference and shifting in the bow wave
amplitude. There is also a slight overestimate in the mid-ship region, and low estimate in the
front 2x/L = — 0-6 to — 0-4) and stern (2x/L = 0-8 to 0-9) regions. Comparisons and test
results showed that adaptive node distribution and B-spline approximation of the Wigley
hull are quite accurate and acceptable for estimating the wave formation around the hull.
The development with time of the wave system along the plane of symmetry and around the
hull (angled bow and stern) for Fn = 0-289 is given in Figure 8. It can be observed that the
wave amplitude increases with time and approaches an almost steady form. The wave
pattern generated by a Wigley hull with angled bow and stern is investigated in Figure 9 for
Fn = 0-289 at time t,/g/L = 17 (where t = 24-3s). The results confirm that the bow and
stern are two basic sources of wave formation. There is a front disturbance field at the bow,
and transverse wave formation starting from the bow region due to the forward body
displacement.

Finally, as an illustration of the effectiveness of the adaptive algorithm, the development
with time of the total wave resistance of a Wigley hull with an angled bow and stern is
shown in Figure 10 for Fn = 0-289. The components of total resistance force are nondimen-
sionalized by 3pU32S,, where U, is the final velocity and S, is the nominal wetted surface
(So = 0-148L72 in this case). The biggest contribution to the total seems to come from the
— pUy(t)0¢/0x component. The average value of total wave resistance for Fn = 0-289
approaches a value 5:9% higher than the experimental result (marked EXP in Figure 10)
given by Noblesse & McCarthy (1983). One possible reason for overestimating the total
wave resistance in Figure 10 is the lack of viscous effects in the numerical model. At low
speeds, the waves made by the ship are small, and the resistance is predominantly viscous in
character. Note that, for a non-viscous and incompressible fluid, the ship will experience
only the wave-making resistance. As a result of this, the net fore-and-aft force resulting from
the pressure distribution over the wetted hull surface gives the wave-making resistance.
However, the shear stress in the fluid domain is assumed zero, thus the frictional resistance
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Figure 9. Free-surface waves for Wigley hull with angled bow and stern, N = 3267, Ny = 535,
t/g/L =17.

is neglected. Another possible reason is the scale effect on the wave-making resistance
during the experiment. This is directly related to neglecting the effects of viscosity and
depends on the Reynolds number and therefore on the size of the model. The model behaves
as though it were longer than its actual length, and this is undoubtedly due mostly to the
virtual lengthening of the form due to the viscous boundary layer. The experimental results
may contain some additional errors due to surface tension and blockage effects. Surface
tension causes capillary waves and other effects and blockage effects increase the frictional
resistance because the walls and the bottom of the basin make the water move faster past
the ship.
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Figure 10. Wave resistance components for Wigley hull, Fn = 0-289

Most of the CPU time (80%) is consumed in regridding the free surface and body, and
reconstruction and solution of the influence matrix system. In order to reduce the CPU
time, local dynamic station allocations instead of the global allocation need to be used.
Furthermore, improving the performance of the matrix construction and solution is vital to
speed up the computation. In this regard, more efficient iterative solvers with effective
preconditioners (such as one-sided diagonal scaling or modified incomplete factorization)
are being developed. Alternatively, a more efficient multipole acceleration scheme such as
presented by Scorpio et al. (1996) can be employed to further speed up the solution
procedure.

9. CONCLUDING REMARKS

An indirect desingularized boundary integral method is used for the solution of the
transient nonlinear ship-wave problem in three dimensions. Two adaptive grid-generation
techniques are proposed and compared. Both techniques redistribute the node points
automatically on the instantaneous wetted hull surface at each major integration time-step.
Two types of hull form are used: (a) a Wigley hull, and (b) a Wigley hull with raked bow and
stern. The second hull form is created in a parametric space using B-spline surface
approximations. Node points are distributed either by a weight function or by a two-sided
hyperbolic tangent technique. The method allows the computations to be carried out on
arbitrary hull forms. In this study, the hull form is represented with a single B-spline hull
surface. Thus it is difficult, in general, to add bulbous bows and transom sterns with the
required accuracy. Therefore, for more complex hull forms, the next step will be to increase
the B-spline hull surface representation to more than one surface. The locations of the
source points near the bow and stern regions directly affect the convergence of the iteration
procedure. Two different iterative matrix solvers have been developed and used here for fast
convergence and accurate computations of the influence matrix system. Specially designed
preconditioners and matrix scaling have been developed and employed to improve the
convergence speed.
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